Модель коленного сустава

Разработка конструкции и технология изготовления протеза коленного сустава с применением программ фирмы Delcam

Модель коленного сустава

Предлагаем читателям выдержки из конкурсной работы студента Пензенского государственного университета Ивана Рыкова, выполненной под руководством профессора А.Н. Машкова и доцента С.А. Нестерова. Данная работа завоевала одно из двух первых мест на ежегодном международном конкурсе студенческих работ 2013 года, проводимом компанией Delcam среди российских и украинских университетов.

Заболевания суставов в организме человека приводят к дискомфорту в движении, а следовательно, к снижению качества жизни. В некоторых случаях происходит даже полная потеря функций конечности. Когда консервативное лечение оказывается неэффективным, одним из решений данной проблемы становится тотальное эндопротезирование.

Предложенный подход к проектированию и изготовлению эндопротеза предполагает индивидуальный анализ особенностей каждого пациента, что обеспечивает оптимальный вариант получения необходимого функционала и повышения качества жизни человека.

Разработка последовательности проектирования и изготовления рассматриваемых деталей

Анализируя конструкцию эндопротеза коленного сустава (рис. 1), его можно разделить на три составные части: бедренный компонент, полиэтиленовый вкладыш и тибиальный компонент.

Рис. 1. Составные части эндопротеза

Для получения требуемых компонентов заданной формы и сокращения времени подготовки производства была спроектирована последовательность по созданию и изготовлению основного элемента эндопротеза — бедренного компонента.

Было предложено два варианта реализации: первый — проработка опытного или уникального экземпляра путем только механической обработки всех наружных поверхностей из заготовки в виде проката, а второй — применение серийной технологии при использовании заготовки, полученной литьем по выплавляемым моделям.

Рассмотрим процесс подготовки производства для обоих вариантов, поскольку этапы работы над конструкцией в них очень схожи. Для выполнения практически всех этапов цикла проектирования и изготовления будет применяться ПО Delcam.

Построение 3D­моделей

Для создания 3D­модели бедра и голени пациента на основе комплекта томограмм выполнялись следующие действия: проведение сканирования пациента на компьютерном томографе; получение аксиальных срезов (томограмм) в формате DICOM; выполнение предварительной обработки томограмм (редактирование для выделения рабочей области построения модели); построение по томограммам трехмерной компьютерной модели.

Для построения 3D­модели коленного сустава был взят комплект томограмм пациента. В программе 3D­DOCTOR на основе набора полутоновых изображений создавалась триангуляционная модель (рис. 2).

Рис. 2. Триангуляционная модель коленного сустава в среде 3D-DOCTOR

Рис. 3. Триангуляционная 3D-модель коленного сустава

Рис. 4. Образующие бедренный компонент сечения

Далее импортируем в программу PowerShape триангуляционную модель коленного сустава (рис. 3).

Полученные модели использовались как для моделирования протеза, так и для проверки методики имлантирования протеза в тело человека.

Для получения профиля бедренного компонента необходимо было построить 15 сечений и направляющие (рис. 4). Все сечения были выполнены на основе анализа зарубежных патентов, а также рентгеновских снимков и томограмм коленного сустава. Полученные сечения для большей плавности были отредактированы сглаживанием при помощи функций PowerSHAPE График кривизны и Сглаживание кривой.

Рис. 5. Анализ кривизны после редактирования

Рис. 6. Проверка гладкости поверхности

После создания всех сечений и направляющих была построена основная поверхность бедренного компонента и проведен анализ кривизны (рис.

5), который наглядно показал, что в результате вытягивания поверхность получилась недостаточно гладкой.

Для достижения корректной формы бедренного компонента поверхность была отредактирована путем удаления некоторых точек и сглаживания. В результате была получена форма бедренного компонента и проведен анализ гладкости (рис. 6).

Внутренняя (мыщелковая) поверхность бедренного компонента создавалась путем формирования контура заданного профиля, его вытягивания и пересечения с уже созданной формой.

Поскольку эта поверхность участвует в соприкосновении с живой костью, для оптимальной сцепляемости и приживляемости была создана развитая поверхность в виде призм, сделаны два отверстия под штифты и две боковые выемки для снятия бедренного компонента в случае ревизии. Готовая модель бедренного компонента представлена на рис. 7.

Рис. 7. 3D-модель бедренного компонента

Для построения 3D­модели полиэтиленового вкладыша сначала производится построение контуров будущей подложки на основе использования проекций с модели бедренного компонента, а затем с помощью команд Вытягивание и Ограничение поверхности создаются поверхности подложки.

После этого формируется плавная эллипсоидная поверхность под мыщелковую зону бедренного компонента и посредством команды Ограничение поверхности получается верхняя часть подложки. Помимо этого создается выступ для установки и закрепления полиэтиленового вкладыша в большеберцовый компонент.

Процедура построения 3D­модели полиэтиленового вкладыша показана на рис. 8.

Рис. 8. Этапы построения модели полиэтиленового вкладыша

3D­модель тибиального компонента была построена нами на основе элементов полиэтиленового вкладыша. К основным элементам добавляются ребра жесткости и площадки с углублением для установки полиэтиленового вкладыша (рис. 9).

Рис. 9. 3D-модель тибиального компонента

Кинематический анализ эндопротеза

Теперь необходимо проверить конструкцию эндопротеза при различных углах сгиба ноги на основе построения характерных позиций (рис. 10).

Необходимо также оценить пятно контакта, которое возникает между бедренным компонентом и полиэтиленовым вкладышем при различных углах сгиба. Размер пятна контакта играет важную роль в функционировании эндопротеза, поскольку величина трения прямо пропорциональна размеру пятна. На рис.

11 показаны пятна контакта бедренного компонента и полиэтиленового вкладыша при различных положениях без приложения нагрузки. В положении максимального наклона ноги пятно контакта существенно меньше, но и нагрузка на сам протез в этом положении меньше.

В данном случае вся нагрузка ложится на связки и мышечную ткань.

a

b

v

Рис. 10. Положение эндопротеза при: а — выпрямленной ноге (0°); б — полусогнутой ноге (45°);
в — согнутой ноге (90°)

Прочностной анализ

Коленный сустав представляет собой один из наиболее сложных и многофункциональных суставов человеческого организма — он принимает на себя практически всю нагрузку, связанную с бегом и ходьбой.

Сама механика движений в коленном суставе является весьма сложной и включает одновременное сгибание, качение и вращение. Различные замеры сил при динамической ходьбе показывают, что силы, возникающие в суставной системе в процессе ходьбы, как минимум, достигают семикратной массы тела.

Так, для среднестатистического человека весом в 70 кг максимальная нагрузка в колене при динамической ходьбе будет близка к 5000 Н.

Рис. 11. Пятно контакта при угле сгибания: а — 0°; б — 45°; в — 90°

Рис. 12. Граничные условия и результаты анализа по запасу прочности

Анализ напряженно­деформированного состояния эндопротеза в CAE­системе (рис. 12) показал, что полученный коэффициент запаса прочности равен 25, напряжения находятся в пределах заданного диапазона, а деформации очень малы. Спроектированный эндопротез коленного сустава полностью отвечает всем параметрам качества и надежности конструкции.

Геометрическое моделирование эндопротеза совместно с моделями колена

Производим сборку модели коленного сустава с эндопротезом (рис. 13). Для этого в CAD­системе PowerSHAPE с использованием методов поверхностного и фасетного 3D­моделирования совмещаем 3D­модель эндопротеза с резекцией кости бедра и голени.

Рис. 13. Сборка коленного сустава с эндопротезом

Построенная 3D­модель на этапе подготовки к операции позволит хирургу проанализировать предполагаемое хирургическое вмешательство, спланировать необходимый перечень работ по корректировке формы элементов костей и заранее внести изменения в проект протеза в случае нестандартных решений. При необходимости возможно проведение дополнительных кинематических построений с элементами человеческого тела и анализа степени подвижности и надежности закрепления будущего эндопротеза.

Проектирование приспособления для механической обработки заготовки бедренного компонента

Так как деталь имеет сложную форму, нами было спроектировано специальное крепежное приспособление, которое применяется в операциях фрезерования, шлифования и полирования. Проектирование приспособления осуществлялось в CAD­системах PowerSHAPE и КОМПАС­3D (рис. 14).

Рис. 14. Приспособление в сборе

Разработка управляющих программ для станков с ЧПУ

Для разработки управляющих программ для станков с ЧПУ использовалась CAM­система PowerMILL. Обработка детали осуществляется за два технологических установа: на первом установе заготовка крепится в тисках, а на втором деталь фиксируется в приспособлении.

При реализации технологии изготовления изделия методом литья первый установ отсутствует. Все поверхности внутренней области получаются в литейной форме.

Некоторые из разработанных нами управляющих программ для позиционной (3+2) пятиосевой фрезерной обработки приведены на рис. 15­17.

После выполнения всех фрезерных операций осуществляется шлифование и полирование рабочих поверхностей протеза с целью достижения требуемых параметров качества и геометрической точности.

Рис. 15. Черновая обработка на первом установе

Рис. 16. Черновая обработка верха на втором установе

Рис. 17. Чистовая обработка верха на втором установе

Проектирование литейной оснастки для литья восковой модели

Построение модели отливки бедренного компонента осуществлялось на основе уже готовой 3D­модели бедренного компонента. На отливку дается усадка 1,8%, которая компенсируется путем масштабирования модели.

После этого строятся линии разъема с учетом имеющихся поднутрений и возможности извлечения отливки из формы.

Затем на основе линии разъема создается поверхность разъема и строится основной формообразующий элемент литейной формы (рис. 18).

Рис. 18. Вставка нижняя

Рис. 19. Формообразующие элементы литейной формы в сборе

Далее по аналогии строим оставшиеся элементы литейной формы. Формообразующие элементы литейной формы в сборе представлены на рис. 19.

Для проработки технологии изготовления нами был изготовлен макетный образец элементов пресс­формы из модельного воска на станке PAG 0501. Фотографии процесса обработки и изготовленные элементы приведены на рис. 20.

Рис. 20. Фотографии процесса обработки элемента литейной формы

Контроль размеров элементов литейной оснастки

Для проработки процесса измерения формообразующих элементов пресс­формы нами использовалась CAI­система PowerINSPECT и портативный ручной КИМ­манипулятор Microscribe­3DX. Учебная измерительная рука Microscribe­3DX (рис. 21) позволяет производить измерения деталей сложной формы с точностью 0,21 мм.

Рис. 21. Выполнение измерений при помощи Microscribe-3DX

Программа и методика контроля дает наглядное представление о процессе измерения (рис. 22).

Так, на результатах контроля ключевых сечений в нижней вставке отображены точки зеленого, красного или синего цвета — это места, где были сняты координаты поверхности в сравнении с теоретической CAD­моделью (зеленый — точка в поле допуска, красный — брак исправимый, синий — брак неисправимый). Применение КИМ и CAI­системы PowerINSPECT позволило эффективно проверить и подтвердить качество изготовления изделия.

Рис. 22. Сравнение результатов обработки с теоретической CAD-моделью

Заключение

Разработанная технология проектирования и изготовления эндопротеза коленного сустава с применением компьютерных технологий позволила существенно сократить сроки подготовки производства, уменьшить трудоемкость на конструктивно­технологическую отработку, исключить ошибки в изготовлении деталей, а также сократить затраты на технологическое оснащение.

В настоящее время на Пензенском предприятии ЗАО НПП «МедИнж» (один из лидирующих производителей эндопротезов в России) совместно со специалистами кафедры травматологии Медицинского института Пензенского государственного университета при привлечении ресурсов Технопарка высоких медицинских технологий Пензенской области прорабатывается вопрос внедрения в производство созданной методики проектирования и изготовления коленного эндопротеза.

САПР и графика 1`2014

Источник: https://sapr.ru/article/24354

Электронный научный журнал Современные проблемы науки и образования ISSN 2070-7428

Модель коленного сустава
С морфо-физиологической точки зрения коленный сустав представляет собой сложную систему в структурном и функциональном отношениях [1, 4]. Все элементы сустава являются нелинейными физическими средами.

Подвижность коленного сустава определяет характер пространственного поведения остальных элементов опорно-двигательного аппарата человека. Наконец, следует отметить, что любые анатомо-биомеханические показатели, характеризующие сустав, строго индивидуализированы [2].

В связи с этим чрезвычайно актуален корректный подход к выбору лечебно-диагностических и реабилитационных мероприятий с учетом индивидуальных особенностей, что в значительной мере определяется решением следующих задач [7,8]:

1.

    Описанием фазового пространства наблюдения коленного сустава и выбором информационных параметров для осуществления системного подхода в рамках измерительного процесса;

2.    Синтезом структурной модели силовых взаимодействий между элементами коленного сустава;

3.    Распределением аналитических формализмов описания силовых контактов элементов коленного сустава.

Материалы и методы исследования

Корректный выбор лечебно-диагностических и реабилитационных мероприятий за счет управления силовыми взаимодействиями элементов сустава целесообразно объективизировать введением модели диагностируемого состояния [3]:

, (1)

где  – модель диагностируемого физиологического состояния;  – модель физиологической функциональной системы (ФФС);  – модель области определения ФФС;  – модель физиологических констант;  – модель условий функционирования;  – модель системного параметра.

На основании анатомической схемы коленного сустава (1) возможно составить блок-схему структуры взаимодействий между его элементами (рис. 1).

Рис. 1. Структура межэлементных взаимодействий

Формальным изображением структуры межэлементных взаимодействий является граф следующего вида:

(2)

Здесь приняты следующие обозначения: КРСВ1,2 – крестообразные связки 1 и 2 соответственно; ПСВ – поперечная связка; СХЖ – сухожилие; Тр – трение; БК – бедренная кость; МЩ – мыщелок; ББК – большая берцовая кость; МБК – малая берцовая кость; МН – мениск; ББКСВ – большеберцовая коллатеральная связка; НК – надколенник; СВНК – связка надколенника; БСВ – бедренная связка.

С помощью графа (2) можно составить категорную систему [3] силовых межэлементных взаимодействий:

Здесь индексы 1,2,3 у категорий  соответствуют первой и второй крестообразным связкам (индексы 1 и 2) и поперечной связке (индекс 3). Поскольку элементы БК, ББК, МЩ, МН, НК и МБК входят в тот или иной комбинации во все категории системы (3), постольку эта система корректно адекватна модели функциональной системе .

Категория (3) может быть дополнена информацией о типах связи структурных элементов и типах нагружения соединительных элементов. С этой целью строятся матрицы типов связи и типов нагружения:

Таблица 1

Матрица типов связи

БКМЩББКМБК
БКСвязь трениемКоллатеральная связкаСухожилие
МЩСвязь трениемКрестообразная и поперечная связки
ББККоллатеральная связкаКрестообразная и поперечная связкиСухожилие
МБКСухожилиеСухожилие

Таблица 2

Матрица типов нагружения

БКМЩББКМБК
БКТрение скольжения; сжатиеДеформация растяженияДеформация растяжения
МЩСжатиеРеакция на срез, реакция на сжатие
ББКРеакция на растяжениеТрение среза, реакция на сжатиеРастяжение, кручение
МБКРеакция на растяжение/кручениеРеакция на растяжение/кручение

Всякая модель предполагает использование числовых характеристик её отдельных элементов, их характер и рисунок распределения на модели.

В данном случае назначение числовых величин основывается на том, что связки – это плотные соединительно-тканые тяжи и пластины, соединяющие кости скелета или отдельные органы.

Располагаясь преимущественно в области суставов, укрепляют их, ограничивают или направляют движение в суставах. При этом все связки имеют физические характеристики в соответствии с их индивидуальным назначением.

м модели области определения  являются интервалы значений каждого компонента системы (3), которые обозначим следующим образом:

Здесь  означает комплекс конкретных значений, что соответствует употребления записи , семейств параметров, что обозначено штриховой линией над именем элемента, угловые скобки имеют свой порядковый индекс . Фактор семейства обозначен фигурными скобками. Среди подобных параметров следует отметить, прежде всего, модуль упругости материала элемента: EБК, например.

Модель МФК представляет собой совокупность неизменных констант, характеризующих элементы объекта, то есть коленного сустава, в геометрическом или физическом отношении:

 (5)

Модель  содержит перечень разнообразных условий, при которых соблюдается стабильность функционирования коленного сустава и перечисляются допустимые границы этих условий.

Модель системного параметра  содержит имя параметра или параметров, измерения которого (или которых) позволяет объективно оценивать физиологическую функциональную систему (ФФС), а также уравнение измерительной процедуры, так как это сделано, например, в (3), (4). При детализации поведения сустава в фазовом силовом пространстве нужно для каждого его элемента разместить центр координатной системы и рассматривать перемещение каждого элемента под воздействием внешних относительно элементов сил.

Основанием для определения положения систем координат нагружения взаимодействующими парами служит граф (2).

Все взаимодействующие пары реализуют удержание общего равновесия тела в пространстве, и вектор взаимодействия имеет произвольное текущее направление, однако, оси координат всех координатных систем коллинеарны между собой и результирующей системе.

Поэтому в данном случае целесообразно организовать системы координат относительно всех пар взаимодействий. С учетом сказанного результирующий вектор силовых взаимодействий пар можно представить следующим образом:

. (6)

Функционал каждой векторной компоненты определяется в соответствии с таблицами матриц типов соединения между элементами (табл. 1) и типов нагружения (табл. 2) соединительных элементов.

Области определения и существования функционалов, а также коэффициенты и параметры принимаются в соответствии с моделями (4) и (5).

Начальные и граничные условия для функционалов из (6) назначаются по модели .

С учетом (6) можно написать  (7).

Выводы

Таким образом, категорная модель коленного сустава человека позволяет объективизировать состояние анатомо-функциональных элементов сустава. Это дает возможность наиболее четко выявлять наличие или отсутствие патологических состояний коленного сустава [5,6], осуществлять выбор рациональных методов лечения, реабилитации и профилактики.

Предложенная формализация поведения коленного сустава является корректной, обобщенной, благодаря категорному описанию, и в то же время допускает требуемую конкретизацию, определяемую индивидуализацией самого объекта. Она предполагает четкую последовательность анализа физиологического состояния объекта и способствует развитию информационных технологий в рамках лечебных и реабилитационных технологий.

Рецензенты:

Маланин Д.А., д.м.н., профессор, заведующий кафедрой травматологии, ортопедии и ВПХ с курсом травматологии и ортопедии ФУВ, ГБОУ ВПО «Волгоградский государственный медицинский университет» Минздрава России, г. Волгоград;

Гущин А.В., д.м.н., доцент кафедры биотехнических систем и технологий, ГБОУ ВПО «Волгоградский государственный медицинский университет» Минздрава России,                     г. Волгоград.

Источник: https://science-education.ru/ru/article/view?id=22735

Эндопротез коленного сустава: рейтинг производителей, достоинства и недостатки

Модель коленного сустава

Сегодня эндопротезы коленных суставов выпускаются аногими компаниями в разных странах мира. При желании на рынке можно найти огромное количество первичных, ревизионных, онкологических, тотальных, одномыщелковых протезов. Все они различаются по материалу, строению, способу фиксации и многих других характеристиках. При этом каждый имплант имеет свои преимущества и недостатки.

Импланты из черной керамики.

Люди, которым предстоит оперироваться, стремятся найти «лучший», «самый качественный» и «долговечный» протез. К сожалению, подобные поиски являются абсурдом. Подбирать имплант нужно не по цене или «популярности», а с учетом его характеристик. Ну и, конечно же, выбор должен осуществляться в индивидуальном порядке. Это значит, что эндопротез следует подбирать под конкретного пациента.

Совет! Запомните, что покупка самого дорогого импланта не обеспечивает успех операции. При эндопротезировании гораздо важнее правильный подбор протеза и его качественная установка. Если вы хотите получить хороший результат – обращайтесь в соответствующую клинику, где работают квалифицированные специалисты.

Эндопротезирование колен в Чехии: гарантии, цены, реабилитация, отзывы и статистика.

Узнать подробнее

Основные требования к коленным эндопротезам

Отметим, что все существующие эндопротезы соответствуют базовым требованиям и могут стать полноценной заменой коленному суставу. Логично, что на рынке не может быть имплантов, которые не отвечали бы определенным стандартам. Но при всем этом одни протезы изготавливаются из более качественных и износостойких материалов, а другие имеют более низкое качество.

Основные требования к хорошему эндопротезу:

  • Биосовместимость. Материалы, из которых изготавливают имплант, обязаны быть гипоаллергенными и не должны вызывать реакций отторжения.
  • Соответствие анатомическим особенностям скелета. Эндопротез должен соответствовать размеру и в точности повторять природные изгибы костей.
  • Соответствие механических характеристик материалов определенным структурам коленного сустава. Материал, из которого состоит имплант, должен быть прочным и выдерживать сильные нагрузки. А гладкие поверхности протеза обязаны обеспечивать легкое скольжение его компонентов.
  • Хорошая функциональность. Качественный эндопротез должен обеспечивать хорошую амплитуду сгибаний и разгибаний, не ограничивая при этом подвижность колена.
  • Сохранение формы и функций на протяжении длительного времени. С годами эндопротезы не должны стираться или деформироваться.
  • Высокая износостойкость. Гарантийный срок службы современных протезов составляет 15-20 лет. Известно немало случаев, когда имплант «работал» на 5-10 лет дольше положенного времени.

Критичный износ пластиковой платформа коленного импланта.

Примечательно, что для нормального функционирования протеза требуется не только его высокое качество, но и правильная установка. Если в ходе операции хирург неправильно ориентирует компоненты импланта – сустав не будет нормально работать. От качества установки также зависит срок службы протеза.

Факт! Доказано, что установка имплантов сомнительного производства гораздо чаще приводит к осложнениям. К примеру, инфекции в области хирургического вмешательства развиваются у 3-10% прооперированных. В аналогичных условиях, но при использовании  протезов производителей мировых марок, инфекционные осложнения возникают всего в 0,3-4,8% случаев.

На что нужно обращать внимание при выборе импланта

При подборе эндопротеза врачи в большей степени смотрят на его конструкцию и тип фиксации. Именно от этих двух характеристик и зависит успех эндопротезирования. В то же время установка неподходящего импланта может привести к неудовлетворительному результату операции и нежелательным осложнениям.

Отметим, что большинство опытных врачей в своей практике использует протезы 2-3 производителей. Это дает свободу выбора и одновременно позволяет специалисту хорошо изучить особенности каждой модели. Так что если ваш лечащий врач работает с какими-то определенными эндопротезами – выберите вариант среди них. Не вынуждайте хирурга ставить малознакомую для него модель.

Таблица 1. Основные принципы подбора эндопротеза.

ХарактеристикиВариацииОсобенности использования
МатериалМеталлические компоненты (бедренный, большеберцовый, надколенниковый) производят из сплавов на основе титана или кобальта-алюминия. Для изготовления амортизационного вкладыша используют ультравысокомолекулярный полиэтилен.Более качественными, прочными и износостойкими считаются эндопротезы из титановых сплавов. Большинство мировых производителей делает импланты именно из таких материалов. Если у вас есть возможность выбора – отдавайте предпочтение протезам из титана.
Тип фиксацииСегодня в ортопедии и травматологии используют импланты с цементной и бесцементной фиксацией. Для установки первых используют специальный полимерный цемент, вторые имплантируют по методу press fit (путем «плотной посадки»).

Цементные эндопротезы чаще ставят людям пожилого возраста, которые страдают системным остеопорозом.

Импланты с бесцементым типом фиксации рекомендуют молодым пациентам, а также лицам с нормальной плотностью костной ткани и узким каналом бедренной кости.

Подвижность платформыСуществует два типа конструкции протеза коленного сустава: Fixed Bearing и Mobile Bearing. Для первого характерно плотное соединение полиэтиленового вкладыша и металлического тибиального компонента. Второй вариант предусматривает определенную свободу движений платформы.

Пенсионерам и людям, ведущим малоактивный образ жизни, специалисты рекомендуют протезы с фиксированным вкладышем. Конструкция Mobile Bearing требует более сильной поддержки со стороны мягких тканей и связок. Следовательно, ее устанавливают преимущественно молодым и активным людям.

Что касается лиц с избыточной массой тела, им также больше подходит вариант с мобильной платформой.

Производитель

Наиболее известными производителями эндопротезов являются компании Biomet, Zimmer, Stryker, Aesculap, DePuy и т.д.Большинство врачей рекомендует своим пациентам модели зарубежных производителей. Отечественные импланты имеют более низкое качество, чем импортные, но при этом находятся с ними в одной ценовой категории.
ЦенаОтечественные эндопротезы стоят ненамного дешевле импортных. Цены на первые колеблются в пределах 130000-160000 рублей, на вторые – 150000-200000 рублей.Дорогие модели обычно имеют более сложные конструкции, а изготавливают их из более качественных материалов. Но как мы уже сказали, высокая стоимость импланта не является гарантией успешной операции.

наиболее популярных эндопротезов

Давайте рассмотрим пятерку мировых лидеров, выпускающих наиболее качественные и износостойкие эндопротезы коленных суставов.

1 место – Zimmer

Американская компания Zimmer занимается производством эндопротезов на протяжении почти 100 лет. На сегодняшний день она выпускает целый ряд имплантов, которые подойдут для пациентов любого возраста и пола. Продукцию данного производителя с успехом используют для выполнения однополюсного, малоинвазивного и тотального эндопротезирования.

Импланты фирмы Zimmer:

  • Zimmer High-Flex. Имплант представляет собой систему для одномыщелкового эндопротезирования коленного сустава. Его используют в тех случаях, когда пациенту требуется замена лишь одной части колена (травмы, переломы и т.д.). Успешность однополюсного эндопротезирования имплантом Zimmer High-Flex составляет 98% за 10 лет, что является самым высоким показателем на сегодняшний день.
  • Zimmer Gender Solutions. Эндопротезы созданы с учетом анатомических различий в строении мужских и женских колен. Установка этих имплантов позволяет добиться максимально качественных результатов операции у представителей разных полов.
  • Zimmer Gender Solutions Patello-Femoral Joint. Система используется для проведения малоинвазивных операций. Имплант применяют для раннего хирургического лечения у мужчин и женщин с деформирующим остеоартрозом.
  • NexGen LPS-Flex Mobile и LPS-Mobile. Являются тотальными эндопротезами с гибридным типом фиксации. Имеют подвижный полиэтиленовый вкладыш, что обеспечивает максимальную мобильность коленного сустава.

Любопытно! Компания Zimmer выпускает не только искусственные импланты, но и продукты клеточной инженерии для восстановления поврежденных суставных хрящей. Ее уникальная технология DeNovoNT позволяет успешно лечить остеоартроз I-II степени.

Еще один мировой лидер в производстве продукции для ортопедии, травматологии, стоматологии и спортивной медицины. Компания была основана в 1977 году в США. Сегодня она выпускает эндопротезы, зубные импланты, системы фиксации костных фрагментов, расходные материалы для травматологии и ортопедии.

Коленные протезы компании Biomet:

  • Vanguard. Представляет собой тотальный коленный протез с бесцементным типом фиксации. Стопорная вставка импланта пропитана витамином E.
  • AGC Knee. Эндопротез обладает повышенной прочностью и износостойкостью. Отметим, что компания выпускает конструкции, позволяющие как сохранить, так и заменить крестообразную связку.

В ходе клинических исследований было установлено, что выживаемость эндопротезов Biomet – 98%. Средняя продолжительность службы имплантов составляет 20 лет.

Любопытно! В 2015 году Zimmer и Biomet объединились, создав компанию ZimmerBiomet. Скорее всего в ближайшем будущем фирма порадует нас новой качественной продукцией.

3 место – Aesculap

Немецкая компания Aesculap была основана в 1967 году. Сегодня наряду с другой продукцией она производит целуют линейку эндопротезов коленных суставов. Давайте рассмотрим наиболее известные модели.

  • Columbus Total Knee System. Система предназначена для тотального эндопротезирования колена. Компания выпускает большое количество моделей с разными типами фиксации, различными платформами и ножками.
  • Columbus Revision Total Knee System. Имплант предназначен для ревизионного эндопротезирования. Выпускается в разных размерах.
  • AS Advanced Surface. Модель имеет уникальное многослойное покрытие из нитрида циркония и керамики. Это делает протез очень прочным и повышает его износостойкость на 65%.

Columbus

Среди недостатков продукции Aesculap следует выделить отсутствие так называемых гендерных имплантов, которые дают возможность подобрать наиболее оптимальный вариант для мужчин и женщин.

4 место – Johnson&Johnson

Производством коленных имплантов занимается отделение известного концерна Johnson&Johnson, которое называется DePuy Synthes. Оно производит разные модели для тотального, ревизионного и онкологического эндопротезирования. Компания выпускает протезы с фиксированным и подвижным вкладышем, с цементным и бесцементным типами фиксации.

5 место – Stryker

Компания выпускает уникальный коленный эндопротез Scorpio NRG. Он имеет фиксированную платформу, но при этом его подвижность не хуже, чем у конструкций типа Mobile Bearing. Отметим, что бедренный компонент модели NRG имеет 9 размеров, что позволяет подобрать максимально подходящий вариант для каждого пациента.

Источник: https://msk-artusmed.ru/endoprotezirovanie/rejting-kolennyh-endoprotezov/

О Суставах
Добавить комментарий